Group dinner

Today we have attended a group dinner with our guest prof. Minoru Mizuhata. We spent a lot of time talking and enjoying delicious polish cuisine. We have taken a group picture to memorize that event!

Intern in our group

Our group becomes more and more international. For three months we will host Mr. Claudio Imparato from Italy. Claudio is a PhD student at University of Naples Federico II, where he works in the group of Prof. Antonio Aronne.

EEPM3 is close

The photocatalytic conference EEPM3 that will be organized by our group is getting closer and closer. See you in May in Kraków.

New group members

The Team of Photocatalysis has two new members: Dr. Taymaz Tabari from Iran joined us as a post-doc, while Mr. Kasidid Yaemsunthorn from Thailand will work on his PhD. Welcome to Kraków!

Thesis defended

Marcin Kobielusz has got his PhD degree. Congratulation!

Activation of C1 molecules in photocatalytic systems. The influence of electronic structure on the processes

The aim of the work was to determine the influence of the electronic structure of a semiconductor on its photocatalytic activity. In this doctoral thesis a modified spectroelectrochemical method is proposed, as a new technique to characterize the electronic states localized close to the edge of the conduction band. Distribution of additional electronic states localized within the bandgap can be qualitatively and quantitatively characterized using this approach. The applicability of the method in determination of deep and shallow electron traps was confirmed for selected semiconductors, such as TiO2, ZnO and ZnS.The proposed method has been applied to determine the influence of the energy states localized within the bandgap on processes of carbon dioxide reduction and methane oxidation. The work was focused on the study of multi- and one-electron reduction of carbon dioxide, and on photocatalytic steam reforming of methane. The studied materials involved bare and modified semiconductors. The influence of applied modifications including metal deposition, thermal treatment, atomic layer deposition, etc. on the photoactivity in the processes of photocatalytic oxidation and reduction reactions, as well as on the electronic structures of materials, has been analysed and discussed. Results and conclusions described in the thesis extend knowledge not only on mechanism of C1 activation, but also can be very useful in elucidating other photocatalytic processes, such as water splitting, hydroxyl radicals photogeneration, organic synthesis and many others.